

Artificial Intelligence

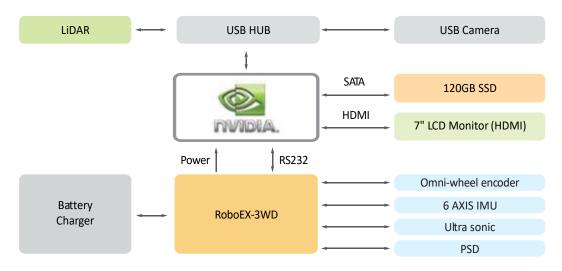
LIDAR RoboEX

Learn the basics of AI (Artificial Intelligence) SLAM and Algorithm using TensorFlow for machine learning and deep learning. Experience high levels of image processing and machine learning LiDAR RoboEXprovides various practical exercises for LiDAR which are applied to autonomous vehicles.

Scientech

LiDAR RoboEX

Artificial Intelligence


Product Overview

Learn basic theory of artificial intelligence and algorithms using TensorFlow which is used for machine learning in various fields. Experience high-performance services such as object and character recognition through deep learning, face recognition and edge detection through image processing. In addition, measure distance and angle using LiDAR and search the shortest path using algorithm.

Product Features

- Experience from basic theories for machine learning to algorithms for its implementation
- Deep learning training
- Machine learning and deep learning using Tensorflow for high performance numerical computation
- · High speed of computation using high performance GPU
- Real-time image processing service using camera mounted on the product
- Training for controlling technology for DC motor and omnidirectional wheel
- · Experience of Python language
- Learning ultrasonic sensor and infrared distance sensor (PSD) technology as well as object detection and obstacle awareness
- Robot driving body adopting Arduino enables learning motor controls and sensor status information acquisition
- Learn ROS and SLAM using LiDAR used for self-driving
- Distance & angle measurement using LiDAR, and path searching using algorithm
- Practical exercises for Neural Network

Block Diagram

LiDAR RoboEX

Hardware Specifications

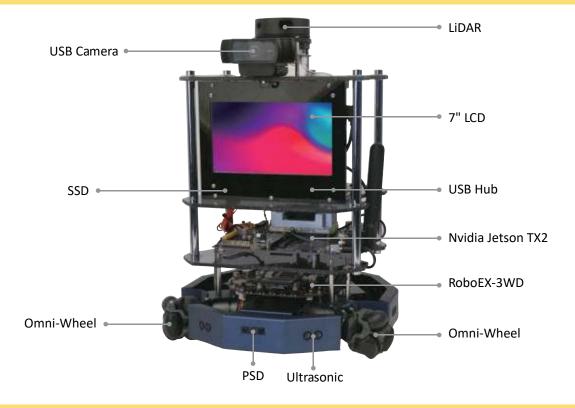
M odule	Category	Specificaitons	M odule	Category	Specificaitons
Nvidia Jetson TX2	СРИ	HMP Dual Denver 2/2 MB L2 +		EXT-Interface	0.8MM 2Raw 40Pin Connecter 2EA
		Quad ARM A57/2 MB L2		Program Interface	Micro-USB Type (DFU)
	GPU	NVIDIA Pascal, 256 CUDA cores		User Interface	Character LCD(16x2), Buzzer
	Video	4K x 2K 60Hz Encode (HEVC)			1EA, Function Button 5EA, Status
		/ 4K x 2K 60Hz Decode (12-bit			LED 2EA, Power LED 1EA
		Support)		Communication	- CAN 2.0 Part A & CAN 2.0 Part B
	Memory	8GB 128bit LPDDR4 59.7 GB/s			- LIN 1.3 & 2.0
	Display	2x DSI, 2x DP 1.2 / HDMI 1.0 /			RG35GM 11Type DC12V 1/50
		eDP 1.4	RoboEX		with Encoder DC-Motor
	CSI	Up to 6 Cmeras (2 Lane) CSI2		Motor Driver	L298P Dual Full Bridge Driver
		D-PHY 1.2 (2.5 Gbps / Lane)	3WD	Sensor	- MPU-6050 3Axis Accelerometer
	PCIE	Gen 2 1x4 + 1x1 OR 2x1 + 1x2			- TMP36GT9 Low Voltage
	Data Storage	32 GB eMMC, SDIO, SATA			Temperature Sensor
	Other	CAN, UART, SPI, I ² C, I ² S, GPIOs			- Encoder with DC-Motor
	USB	USB 3.0 + USB 2.0			- MA40S4R / MA40S4S Ultrasonic
		1 Gigabit Ethernet, 802.11ac			Sensor
	Connectivity	WLAN, Bluetooth			- GP2Y0A21YK Distance Measuring Sensor
RoboEX 3WD	Contoroller	32bit ARM Cortex-M3 ATSAM38EA-		Wheel	Omni Wheel 60MM Active Type
		AU MCU up to 84MHz			/ 6MM Motor Shaft Hole
	Flash Memory	512KB		Battery	11.1V @ 5200mA 3EA
	SRAM	64 + 32KB	Size	310mm x 310mm x 395mm	
	DFU Controller	Low Power AVR 8bit Microcontroller	JI2C	210HIII X 310HIIII X	33311111
	DEO CONTIONER	ATmega16U2-AU(DFU)			

LiDAR Specifications

Item	Unit	M in	Typical	Max	Comments
Distance Range	Meter(m)	TBD	0.15~6	TBD	White objects
Angular Range	Degree	n/a	0-369	n/a	-
Distance Resolution	mm	n/a	< 0.5 < 1% of the distance	n/a	< 1.5 meters All distance range
Angular Resolution	Degree	n/a			

Software Specifications

M odule	Category	Specificaitons	M odule	Category	Specificaitons
Al	TensorFlow	TensorFlow 1.7.0	RoboEX 3WD	AndroX Studio TM	- Cygwin : 1.7.17
	Keras	Keras 1.2.2			- Make : GNU Make 3.82.90
Nvidia Jetson TX2	OS	Ubuntu 16.04			- Eclipse Platform : Kepler(4.3)
	CUDA	CUDA 9.0			- Arduino Platform : 1.0.5 - Java SDK : Java SE Runtime
	cuDNN	cuDNN 7.0.5			Environment (build 1.6.0_26-b03)
	Multimedia	OpenCV 3.4.0			- Android NDK : Release R8E
	Others	- Python 3.5			- Android SDK : Android 4.2 (API 17)
		- ROS Kinetic			- ADT : 22.0.1
RoboEX 3WD	AndroX Studio TM	- Launcher : 2.0 - ARM Cross Toolchain : GCC 4.6.3 for Windows (Newly build the source code) - Host Toolchain : GCC 4.5.3 (Built-in cygwin)			- Android SDK Tools: 22.0.1 - Remote Explorer: 5.1.1 - Remote Shell: 0.62 - Remote Viewer: 2.7.1 - Serial Packet Monitor: 1.2 - Application Package: 1.2


Training Contents

- Deep Learning through RoboEX
- Al / Machine Learning / Deep Learning
- Deep Learning through TensorFlow
- Image Processing

- 2. Robot Control with RoboEX
- RoboEX 3WD
- Robot OS
- Connecting Jetson board and RoboEX 3WD
- Moving & Tracking

- 3. LiDAR with RoboEX
- · Overview of LiDAR
- Robot Operating System
- Algorithm
- Convolutional Neural Network

Layout

Applications

Plant Diseases Detection

Handwriting Recognition

Face Recognition

Lane Recognition

Object Recognition

Path Searching

Room Mapping